ORIGINAL ARTICLE

Can elevated-hip position simulation reduce doses to small bowel in postoperative intensity-modulated pelvic radiotherapy for cervical or endometrial cancer?

Junfeng Li¹, Jin Xu¹, Hongchuan Zhang¹, Yan, Tan¹, Junjun Liao¹, Guangjin Yuan^{1,*}

Department of Oncology, the People's Hospital of Dianjiang Chongging, China

OBJECTIVES: To evaluate the doses to small bowel with elevated-hip position simulation at different angles in patients with cervical or endometrial cancer for postoperative intensity-modulated pelvic radiotherapy.

METHODS: Ten patients with cervical or endometrial cancer underwent postoperative intensity-modulated pelvic radiotherapy. Patients were simulated with elevated-hip position at different angles (0, 20 and 30 degrees). Intensity-modulated pelvic radiotherapy plans were generated for the above three positions to a prescribed dose of 50.4 Gy in 1. 8 Gy daily fractions. Volumes or dose–volume parameters for small bowel, bladder and rectum were compared.

RESULTS: Volumes for small bowel were reduced in the elevated-hip position at 20 or 30 degrees (537.5 \pm 142.9 or 495.9 \pm 123.3 cm3) compared with the position at 0 degree (602.9 \pm 165.3 cm3), but not significantly (P=0.267). Small bowel V10Gy, V20Gy, V30Gy and V40Gy values were also reduced for the elevated-hip position at 20 or 30 degrees (524.2 \pm 137.5, 397.8 \pm 113.2, 202.4 \pm 49.2, 93.8 \pm 21.1 or 484.3 \pm 122.6, 372.9 \pm 93.9, 169.6 \pm 42.0, 88.0 \pm 19.8 cm3) as compared with the position at 0 degree (593.5 \pm 164.0, 482.7 \pm 134.7, 206.7 \pm 66.2, 114.1 \pm 29.0cm3), however, not significantly (P 0.05). The parameters for bladder and rectum were not significant at different positions.

CONCLUSIONS: A slight decrease in small bowel volume or dose was seen in elevated-hip positions (at 20 or 30 degrees), which may reduce small intestine toxicity during postoperative intensity-modulated pelvic radiotherapy.

KEY WORDS: small bowel dose, elevated hip position, postoperative intensity-modulated pelvic radiotherapy, cervical or endometrial cancer

Correspondence: Guangjin Yuan,

Department of Oncology, the People's Hospital of Dianjiang

Chongqing, China E-mail: 273385519@qq.com

Received: January 26, 2025 / Accepted: August 28, 2025 / Published: October 21, 2025

This article is available from: https://e-epih.org/

@ This is an open-access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

© 2025, Korean Society of Epidemiology

INTRODUCTION

According to the recent cancer statistics, an increasing trend of the incidence of gynecologic cancers was observed in China over the consensus guideline for postoperative pelvic radiotherapy of last 2 decades [1]. Among them, cervical cancer ranked fifth in female cancer incidence with 11.34 per 100,000, and endometrial cancer ranked eighth with 6.64 per 100,000 [1]. For high-risk cervical or endometrial cancer patients, postoperative adjuvant lymph nodes [5]. The planning target volume (PTV) was radiotherapy is needed, which may reduce local recurrence and improve overall survival [2].

who undergo radiotherapy for pelvic malignancies [3]. Radical pelvic tissues. surgery (hysterectomy and tumor resection) may cause anatomical displacement of organs, leading to part of the intestinal loop falling fraction. The planning goal for IMRT was to obtain the prescribed into the pelvic cavity. A recent study has shown that the dosevolume of the small intestine receiving 20-40 Gy in the postoperative adjuvant radiotherapy group was statistically increased compared with that in the radical radiotherapy group of cervical cancer [4]. Therefore, we conceive that simulation with elevated-hip position may help the intestinal loop slidding out of the pelvic cavity, and then may reduce the dose to small intestine during pelvic radiotherapy.

METHODS

Patients

Ten patients with cervical or endometrial cancer, who underwent purpose. radical hysterectomy and were shown to have high-risk prognostic factors, e.g. pelvic lymph node (LN) metastasis and/or parametrial invasion, were enrolled in this study. Adjuvant radiotherapy was performed using intensity-modulated radiotherapy (IMRT). The study was approved by the ethics committee of the People's Hospital of Dianjiang Chongqing.

CT simulation

One hour before positioning, patients emptied their bladder and drank 800 ml of water to fill the bladder. Then the patients were Statistical analysis immobilized in the supine position (hip not elevated) with thermoplastic abdominal fixation device. Enhanced computed tomography (CT) scanning was performed with a slice thickness of 5 mm using a Philips large aperture CT machine. The scanning range was from the upper edge of T12 vertebral body to 3 cm below the ischial tuberosity, and The CT images were transferred to the treatment planning system (Elekta, Monaco).

Simulation with elevated-hip position could be completed with styrofoam plus thermoplastic mask. However, the angle of elevated -hip position is hard to determined. Therefore, we used triangular foam pad with 20 or 30 degrees. After the patient lay on the carbon plate with triangular foam pad, low abdominal massage was performed downwards to help the intestinal loop slidding out of the pelvic cavity. CT scanning and images tranferring were taken as the above.

Contour and treatment planning

The clinical target volume (CTV) was contoured according to cervical or endometrial cancer, which comprises vaginal cuff tissue, pertinent surgical clips, lymphoceles, and regional nodes, including common iliac, external and internal iliac, and presacral generated by using 0.5 cm uniform expansion of the CTV. Organs at risk (OARs), were contoured using RTOG guideline, including Radiation-induced enteritis is a common side effect in patients bladder, rectum, small bowel, femoral heads, and other normal

> The prescription dose was 50.4 Gy for PTV at 1.8 Gy per dose to cover 95% of the PTV and not to exceed 110% as maximum dose. The dose constraints for OARs were V50Gy (the volume receiving 50Gy of radiation) < 50% for the bladder, V50Gy < 50% for the rectum, V50Gy < 5% for the femoral heads and Dmax (the maximal dose) < 52 Gy for the small bowel.

> The IMRT plans were generated using Monaco treatment planning system. Plans were optimized until they met the dose specifications for target volumes and critical structures as stated above. The plans with the elevated-hip position at 0 degree were delivered by a dynamic multileaf collimator technique with the Elekta linear accelerator, but the other plans with the elevatedhip position at 20 and 30 degrees were only used for research

Dosimetric evaluation and comparison

Quantitative evaluation of plans was performed by means of dose-volume histogram (DVH). The volumes below the superior plane of PTV, and V10Gy, V20Gy, V30Gy, V40Gy and V50Gy for small bowel, and V40Gy for bladder and rectum, were compared in the three plans with the elevated-hip position at 0, 20 and 30 degrees.

Comparisons of dosimetric indices in the three plans with the elevated-hip position at 0, 20 and 30 degrees were analyzed with one-way analysis of variance. All statistical analysis was conducted with SPSS 20.0 software, and the differences were considered statistically significant if P < 0.05.

RESULTS

Patient characteristics

Ten patients who underwent postoperative adjuvant pelvic radiotherapy, were enrolled in the study, among which 8 patients had cervical cancer, 2 patients had endometrial cancer. The median age of these patients was 58.7 years (range 44-74 years). Table 1 showed the patient characteristics.

Dosimetric comparisons

Mean volumes for small bowel below the superior plane of PTV **DISCUSSION** were reduced in the plans with the elevated-hip position at 20 and 30 degrees (537.5 ± 142.9 and 495.9 ± 123.3 cm3) than that in the for gynecological cancers [6, 7]. Radiation enteritis (RE) is a plan with the position at 0 degree (602.9 ±165.3 cm3), but not common side effect of pelvic radiation, with nearly 80% of significantly (P=0.267). Mean dose volumes for small bowel in plans with the elevated-hip position at 0, 20 and 30 degrees were presented in Table 2. Small bowel V10Gy, V20Gy, V30Gy and V40Gy values were decreased in the plans with the elevated-hip position at 20 and 30 degrees compared with the plan with the position at 0 degree, but there were no statistically significant differences, although marginally statistical difference for V40Gy.

Mean V40Gy for bladder and rectum in the plans with the elevated-hip position at 0, 20 or 30 degrees were 47.9% ± 10.1%, $49.1\% \pm 9.7\%$, $48.1\% \pm 10.0\%$, and $49.6\% \pm 8.2\%$, $50.8\% \pm 9.5\%$, During pelvic radiotherapy, the dose to small bowel can be 50.2% ± 9.6%, respectively; there was no significance in the three plans (P > 0.05).

Table 1. patient and tumor characteristics

Patien t No.	Age (year)	Pathology	FIGO stage
1	69	cervical cancer	IB2
2	60	cervical cancer	IIA1
3	64	endometrial cancer	IB
4	44	cervical cancer	IIA2
5	52	cervical cancer	IB2
6	48	cervical cancer	IIA2
7	58	cervical cancer	IB1
8	56	endometrial cancer	IIA
9	74	cervical cancer	IIA2
10	62	cervical cancer	IB2

Table 2.mean dose volumes (cm3) for small bowel in plans with the elevated-hip position at 0, 20 and 30 degrees (mean ± SD)

Parameters	0 degree	20 degree	30 degree	P value
V10Gy	593.5 ± 164.0	524.2 ± 137.5	484.3 ± 122.6	0.239
V20Gy	482.7± 134.7	397.8 ± 113.2	372.9 ± 93.9	0.101
V30Gy	206.7 ± 66.2	202.4 ± 49.2	169.6 ± 42.0	0.223
V40Gy	114.1 ± 29.0	93.8 ±	88.0 ±	0.05
		21.1	19.8	

Pelvic radiotherapy is generally used as a standard treatment patients experiencing acute RE and 20% late RE [3]. The clinical manifestations of RE include nausea, vomiting, abdominal pain, diarrhea, bloody stool, et al., which may lead to radiotherapy intolerance, or affect the quality of life of patients. Many studies have shown that the occurrence of RE is related to radiation technology, total dose and volume, fraction dose, et al. [8]. Treatment of RE is essentially symptomatic, and its prevention may seem to be more important.

The intestinal loop is mobile in the abdominal-pelvic cavity. reduced through patient positioning (i.e. prone position with belly board) and with manipulation of bladder filling [9-11], in which the intestinal loop may be coerced superiorly and away from the direct paths of irradiation fields. Studies have shown that a prone position results in a lower irradiated small bowel volume than the supine position, and a more significant reduction with the additional use of a belly board, during pelvic radiotherapy [12, 13]. Radical pelvic surgery (hysterectomy and tumor resection) may cause anatomical displacement of organs, leading to part of the intestinal loop falling into the pelvic cavity; therefore, the dose-volume of small bowel receiving 20-40 Gy in the postoperative adjuvant radiotherapy group was statistically increased compared with that in the radical radiotherapy group of cervical cancer [4]. In the present study, we explored the effects of elevated-hip position on the dose-volume of small bowel during pelvic radiotherapy. Small bowel V10Gy, V20Gy, V30Gy and V40Gy values were decreased in the plans with the elevated-hip position at 20 and 30 degrees compared with the plan with the position at 0 degree, although there were no statistically significant differences. Of course, abdomino-pelvic adhesion following operation may offset the effect of elevatedhip position to decrease the volume of small bowel during pelvic radiotherapy. The dose-volume of bladder and rectum was not different among those plans.

In conclusion, the elevated-hip position appears to give superior small bowel dose-volume relative to that of nonelevated-hip position when utilising IMRT for postoperative gynecological cancers. It would be expected to reduce both acute and late toxicity of pelvic radiotherapy.

NOTES

Conflict of interest

The authors have no conflicts of interest to declare for this study.

Funding

This study was supported by the grant from Science & Technology Program Project Funds of Dianjiang (No. djkjxm2023shmskjcxywzd002).

Ethics approval and consent to participate

The ethics approval was obtained from the the People's Hospital of Dianjiang Chongqing. The informed consent was provided before investigation.

Consent for publication

Not applicable for this study.

Competing interests

The authors declare no competing interests.

REFERENCES

1.Han B, Zheng R, Zeng H, Wang S, Sun K, Chen R, Li L, Wei W, He J. Cancer incidence and mortality in China, 2022. J Natl Cancer Cent. 2024 Feb 2;4(1):47-53. (doi: 10.1016/j.jncc.2024.01.006. PMID: 39036382).

2.Ngu SF, Ngan HY, Chan KK. Role of adjuvant and post-surgical treatment in gynaecological cancer. Best Pract Res Clin Obstet Gynaecol. 2022 Jan;78:2-13. (doi: 10.1016/j.bpobgyn.2021.09.001. PMID: 34598899).3.Loge L, Florescu C, Alves A, Menahem B. Radiation enteritis: Diagnostic and therapeutic issues. J Visc Surg. 2020 Dec;157(6):475-485. (doi: 10.1016/j.jviscsurg.2020.08.012. PMID: 32883650).

3.Loge L, Florescu C, Alves A, Menahem B. Radiation enteritis: Diagnostic and therapeutic issues. J Visc Surg. 2020 Dec;157(6):475-485. (doi: 10.1016/j.jviscsurg.2020.08.012. PMID: 32883650).

4.Ma CY, Zhao J, Gan GH, He XL, Xu XT, Qin SB, Wang LL, Li L, Zhou JY. Establishment of a prediction model for severe acute radiation enteritis associated with cervical cancer radiotherapy. World J Gastroenterol. 2023 Feb 28;29(8):1344-1358. (doi: 10.3748/wjg.v29.i8.1344. PMID: 36925455).

5.Small W Jr, Bosch WR, Harkenrider MM, Strauss JB, Abu-Rustum N, Albuquerque KV, Beriwal S, Creutzberg CL, Eifel PJ, Erickson BA, Fyles AW, Hentz CL, Jhingran A, Klopp AH, Kunos CA, Mell LK, Portelance L, Powell ME, Viswanathan AN, Yacoub JH, Yashar CM, Winter KA, Gaffney DK. NRG Oncology/RTOG Consensus Guidelines for Delineation of Clinical Target Volume for Intensity Modulated Pelvic Radiation Therapy in Postoperative Treatment of Endometrial and Cervical Cancer: An Update. Int J Radiat Oncol Biol Phys. 2021 Feb 1;109(2):413-424. (doi: 10.1016/j.ijrobp.2020.08.061. PMID: 32905846).

6.Mayadev JS, Ke G, Mahantshetty U, Pereira MD, Tarnawski R, Toita T. Global challenges of radiotherapy for the treatment of locally advanced cervical cancer. Int J Gynecol Cancer. 2022 Mar;32(3):436-445. (doi: 10.1136/ijgc-2021-003001. PMID: 35256434).

7.Yi L, Zhang H, Zou J, Luo P, Zhang J. Adjuvant chemoradiotherapy versus radiotherapy alone in high-risk endometrial cancer: A systematic review and meta-analysis. Gynecol Oncol. 2018 Jun;149(3):612-619. (doi: 10.1016/j.ygyno.2018.03.004. PMID: 29530332).

8.Shadad AK, Sullivan FJ, Martin JD, Egan LJ. Gastrointestinal radiation injury: symptoms, risk factors and mechanisms. World J Gastroenterol. 2013 Jan 14;19(2):185-98. (doi: 10.3748/wjg.v19.i2.185. PMID: 23345941).

9.Haghparast A, Afandideh M, Farshchian N, Naderi S. Dose-volume parameters comparison of organs at risk between the prone and supine positions in pelvic tumors using 3D-CRT. J Cancer Res Ther. 2023 Jan 1;19(Suppl 2):S792-S799. (doi: 10.4103/jcrt.jcrt 547 22. PMID: 38384058).

10.Wiesendanger-Wittmer EM, Sijtsema NM, Muijs CT, Beukema JC. Systematic review of the role of a belly board device in radiotherapy delivery in patients with pelvic malignancies. Radiother Oncol. 2012 Mar;102(3):325-34. (doi: 10.1016/j.radonc.2012.02.004. PMID: 22364650).

11.Chen VE, Gillespie EF, Manger RP, Skerritt LA, Tran JH, Proudfoot JA, Sherer MV, Einck JP, Mell LK, Moore KL, Yashar CM. The impact of daily bladder filling on small bowel dose for intensity modulated radiation therapy for cervical cancer. Med Dosim. 2019 Summer;44(2):102-106. (doi: 10.1016/j.meddos.2018.02.010. PMID: 29573921).

12. White R, Foroudi F, Sia J, Marr MA, Lim Joon D. Reduced dose to small bowel with the prone position and a belly board versus the supine position in neoadjuvant 3D conformal radiotherapy for rectal adenocarcinoma. J Med Radiat Sci. 2017 Jun;64(2):120-124. (doi: 10.1002/jmrs.187. PMID: 27741381).

13.Kószó R, Varga L, Fodor E, Kahán Z, Cserháti A, Hideghéty K, Együd Z, Szabó C, Borzási E, Szabó D, Müllner K, Varga Z, Maráz A. Prone Positioning on a Belly Board Decreases Rectal and Bowel Doses in Pelvic Intensity-Modulated Radiation Therapy (IMRT) for Prostate Cancer. Pathol Oncol Res. 2019 Jul;25(3):995-1002. (DOI: 10.1007/s12253-018-0436-2. PMID: 29882196).